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EFFECT OF EXCITATION OF INTERNAL DEGREES OF FREEDOM 

IN CLUSTERS ON CONDENSATION KINETICS 

A. L. Itkin and E. G. Kolesnichenko UDC 536.423.4 

At present a number of experimental results have been presented on condensation of va- 
pors of various substances, which cannot be explained by classical theory (see the review 
[i]). One of the factors not considered in sucha theory is the effect of disruption of equi- 
librium cluster distribution over internal degrees of freedom due to the condensation af- 
fecting the kinetics of the process. A method for considering this effect has been proposed 
in a multimolecular model of condensation kinetics. The presence of internal degrees of 
freedom in a monomer can lead to an entire series of new condensation regimes. The present 
study will briefly evaluate such regimes. 

The first question which arises upon consideration of internal degrees of freedom in 
a monomer is related to the method used for defining various types of cluster internal ener- 
gy. It is clear that even small complexes (trimers, tetramers, etc.) may have a quite large 
number of oscillatory modes, which can conveniently be divided into two groups. In the first 
group we have oscillations of molecules entering into the composition of clusters - intermo- 
lecular oscillations, while in the second we have oscillations of atoms forming the molecule 
(monomer) - intramolecular oscillations. Intermolecular oscillations usually are of low en- 
ergy. Thus, for Van der Waals complexes their characteristic frequencies lie in the range 
50-200 cm -I. As for intramolecular oscillations, various situations are possible. 

I. If these oscillations are of low frequency, they effectively exchange energy with 
the intermolecular oscillations, which makes it possible to introduce the total oscillatory 
energy of the cluster Ej(k) (where j is the number of molecules in the cluster and k is the 
energy level number). The existence of various types of intermolecular oscillations is not 
then considered. 

2. If the monomers have high frequency oscillation modes, then their interaction with 
intermolecular oscillations is ineffective. The internal energy of the cluster can then be 
specified by quantum numbers k and s characterizing the total internal energy of low fre- 
quency intermolecular oscillations El(k) and high frequency intramolecular oscillations 
j(s as well as a quantum number characterizing the distribution of the latter over clus- 

iter monomers [the quantum number related to degeneration of the level (k, s Considera- 
tion of interaction leads to removal of the degeneration with respect to this number and 
development of a multiplet of closely spaced levels, while radiationless intracluster tran- 
sitions [4] rapidly lead to a microcanonical distribution for a given ~j. Here we will lim- 
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it our consideration to the case where the state of the cluster is defined by the energy 
Ej(k). This is always possible in the first case, and in the second when excitation of 
hlgh frequency oscillations is neglected. 

Condensation regimes can be classified further by comparing the rates of condensation 
and oscillatory VV- and VT-relaxation of the monomers. 

Using a quasisteady state method analogous to that developed in [2], we can obtain a 
closed system of equations for the slow variables. 

I. For frozen oscillations and for an equilibrium distribution of monomer populations, 
which is realized if the times of W-exchange (~VV) and VT-relaxation (~VT) are significant- 
ly less than the characteristic time of dimer dissociation (Td), these equations have a simi- 
lar structure. Their coefficients depend on the temperature T, however in the latter case 
this dependence is more complex in form. In both situations, by using the quasisteady state 
method, it is possible to obtain a closed system of equations for the cluster concentration 
nj. 

2. A closed system of equations describing evolution of the concentrations nj can also 
be obtained in the case where the characteristic times are related as TVV << ~VT = rd" In 
this case the structure of the equations again coincides with that considered above, although 
the constants which appear in them become two-temperature ones. 

3. The most complex case is that in which ~d << TW = TVT" It is then impossible to 
obtain a closed system of equations for the concentrations ni, and it is necessary to solve 
simultaneously the equations for the concentrations nj (j = I .... , N) and the populations 
x1(k) (k = 1 .... , M). The constants in the equations for nj (j = 2 ..... N) then depend in 
a complex manner on x1(k) (k = I, .... M) and n I. 

In all the situations listed above, the equations for the concentrations n. (j > r + !) 
J 

have the form used in the Szillard model of [i]. Here r is a parameter of the theory, intro- 
duced in [2] and characterizing the size of the cluster, for which the condensation rate is 
comparable to the oscillatory relaxation rate at upper levels. However, if in that model 
the constants for attachment (or breakoff) of a monomer to or from a cluster Kj + and Kj- de- 
pend on the temperature T, then in our case they are nonequilibrium rate constants dependent 
on the populations Xl(k) (k = I, ..., M) (Sec. 3) of on the oscillatory temperature T V (Sec. 
2), and coincide with those used in the Szillard model only for a Boltzmann monomer distri- 
bution (Sec. I). 

However, for j ~ r + 1 the equations for the concentrations nj differ significantly for 
those of the Szillard model. Effects related to this difference were discussed in [3]. 
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